<section-header><section-header><text><text><text><text>

				VACUUMSCHNELZE				
Materials for Common Mode Chokes								
Material	Co – based amorphous	NiFe Permalloys	MnZn Ferrite	Nano- crystalline				
Material basis	approx. 70 % Co	80 % Ni	Mn Zn	approx. 73.5 % Fe				
Permeability µ _{r, max} (10 kHz)	>90 000	< 20 000	15 000	15 000 > 100 000				
Losses P _{Fe, typ.} (25 kHz, 200 mT, 100°C)	5 W/kg	14 W/kg	17 W/kg	3 W/kg				
Saturation Induction B ₈	0.6 T	0.8 T	0.48 T	1.2 T				
Curie Temperature T _c	210°C	400 °C	220°C	> 600℃				
Upper Cont. Operation Temperature T max.	90 °C	120 °C	< 100 °C	> 120 °C				
				18				
	VAC - Adv	anced Materials - The Key to	Progress 18 Oct	2012 slide 18				

			VACUUMSCHMELZE
public utility (AC) power line, the radio frequency on any frequency or frequencies within the band 15 following table, as measured using a 50 µH/50 ohm. Compliance with the provisions of this paragraph sl frequency voltage between each power line and gro the band edges.	voltage that is conducted bac 50 kHz to 30 MHz shall not e as line impedance stabilizatio hall be based on the measurer pund at the power terminal. T	k onto the AC power lin sceed the limits in the a network (LISN). nent of the radio he lower limit applies at	t
public utility (AC) power line, the radio frequency on any frequency or frequencies within the band 15 following tuble, as measured using a 50 pH/50 ohur Compliance with the provisions of this paragraph 14 frequency voltage between each power line and gro the band edges. Frequency of Emission (MHz)	voltage that is conducted bac 50 kHz to 30 MHz shall not et as line impedance stabilizatio hall be based on the measurer sund at the power terminal. T	k onto the AC power lin sceed the limits in the a network (LISN). nent of the radio he lower limit applies at imit (dBuV)	t
public utility (AC) power line, the radio frequency on any frequency or frequencies within the band 15 following table, as measured using a 50 µH/50 ohur Compliance with the provisions of this paragraph 4 frequency voltage between each power line and gro the band edges. Frequency of Emission (MHz)	voltage that is conducted bac 50 kHz to 30 MHz shall not e: s line impedance stabilizatio hall be based on the measurer nund at the power terminal. T Conducted I Quasi-peak	k onto the AC power lin sceed the limits in the a network (LISN). nent of the radio he lower limit applies at imit (dBuV) Average	t
public utility (AC) power line, the radio frequency on any frequency or frequencies within the band 15 following table, as measured using a 50 pH/50 ohur Compliance with the provisions of this paragraph 3 frequency voltage between each power line and gro the band edges. Frequency of Emission (MHz) 0,150.5	voltage that is conducted bac 00 kHz to 30 MHz shall not et is line impedance stabilizatio hall be based on the measure und at the power terminal. T Conducted I Quasi-peak 66 to 56	k onto the AC power lin coeed the limits in the n network (LISN). ment of the radio he lower limit applies at imit (dBuV) <u>Average</u> 56 to 46	t
public utility (AC) power line, the radio frequency on any frequency or frequencies within the band 15 following table, as measured using a 50 pH/50 obt Compliance with the provisions of this paragraph a frequency voltage between each power line and gro the band edges. Frequency of Emission (MHz) 0,15-0,5 0,5-5 3,50	voltage that is conducted bac 50 kHz to 30 MHz shall not e. is line impedance stabilization hall be based on the measure uund at the power terminal. T Conducted I Quasi-peak 66 to 55° 56 50	k onto the AC power lin cceed the limits in the network (LISN). ment of the radio he lower limit applies at imit (dBuV) Average 56 to 46° 46	t
public utility (AC) power line, the radio frequency on any frequency or frequencies within the band 15 following table, as measured using a 30 pH/50 ohm. Compliance with the provisions of this paragraph 14 frequency voltage between each power line and gro the band edges. Frequency of Emission (MHz) 0.15-0.5 0.5-5 5-30 ' Decreases with the logarithm of the frequency	voltage that is conducted bacs 50 kHz to 30 MHz shall not e as line impedance stabilizatio hall be based on the measure nund at the power terminal. T <u>Conducted I</u> <u>Quasi-peak</u> <u>66 to 56°</u> <u>56</u> <u>60</u> ency.	k onto the AC power lim cceed the limits in the network (LISN). ment of the radio he lower limit applies at imit (dBuV) <u>Average</u> 56 to 46 * 46 50	t
public utility (AC) power line, the radio frequency on any frequency or frequencies within the band 15 following table, as measured using a 50 pH/50 obur Compliance with the provisions of this paragraph a frequency voltage between each power line and gro the band edges.	voltage that is conducted bac 50 kHz to 30 MHz shall not e as line impedance stabilizatio hall be based on the measure und at the power terminal. T <u>Conducted I</u> <u>Quasi-peak</u> <u>66 to 56 * 56 60 ency.</u>	k onto the AC power lin ceede the limits in the a network (LISN). nent of the radio he lower limit applies at imit (dBuV) <u>Average</u> 56 to 46 * 46 50	t
public utility (AC) power line, the radio frequency on any frequency or frequencies within the band 15 following table, as measured using a 30 pH/50 ohm. Compliance with the provisions of this paragraph 14 frequency voltage between each power line and gro the band edges. Frequency of Emission (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarithm of the frequencies of the second se	voltage that is conducted bus 06 Hz to 30 MHz shall not e as line impedance stabilizatio und at the power terminal. T <u>Conducted I</u> <u>Quasi-peak</u> 66 to 56 56 56 60 ency.	k onto the AC power lin cceed the limits in the a network (LISN). nent of the radio he lower limit applies at imit (dBuV) <u>Average</u> 56 to 46 ⁺ 46 50	t
public utility (AC) power line, the radio frequency on any frequency or frequencies within the band 15 following table, as measured using a 50 pH/50 ohur Compliance with the provisions of this paragraph 3 frequency voltage between each power line and gro the band edges. Frequency of Emission (MHz) 0.15-0.5 0.5-5 5-50 5-50 * Decreases with the logarithm of the frequency	voltage that is conducted bus 06 HE to 30 MHE shall not e to 18 line impedance stabilizatio und at the power terminal. T <u>Conducted I</u> <u>Quasi-peak</u> 66 to 56 ⁶ 56 60 ency.	k onto the AC power lin sceed the limits in the n network (LISN), nent of the radio he lower limit applies ar imit (dBuV) <u>Average</u> 56 to 46 50	t
public utility (AC) power line, the radio frequency on any frequency or frequencies within the band 15 following table, as measured using a 50 pH/50 ohur Compliance with the provisions of this paragraph 14 frequency voltage between each power line and gro the band edges.	voltage that is conducted bus 06 Hz to 30 MHz shall not e to 18 line impedance stabilizatio und at the power terminal. T <u>Conducted I</u> <u>Quasi-peak</u> 66 to 56 56 56 ency.	k onto the AC power line ceed the limits in the a network (LISN), ment of the radio he lower limit applies at imit (dBuV) <u>Average</u> 56 to 46 [°] 46 50	t

			VACUU					
Measure actual <i>rf</i> current	S.							
Extracted o	Extracted data from test report							
	<u>150 kHz</u>	500 kHz						
Peak Reading	102 dBµV	99 dBµV						
Probe Insertion Loss Correction	+17.0 dB	+10.1 dB						
Actual measurement	119 dBµV	109.1 dBµV						
convert to volts	0.891 Volts	.285 Volts		56				

Date Bostoten Avente Driben Fernet Dates	Dokan Errotan	2 Struct Mar NewCole		and the second			a station in a di X
W + U + F K U 2 - = = =		HERE'T W	50 mm 50 mm (# 4#	1	1.4.04.	A sh D - P	21 (E) + (C) ;
		с	MC design (program		info Exit	Change -
inpi	ut paran	neter			Results		parameter
core: type	W/523		winding: Oren	iss section A	Cu = 0.636	mm ^e (1 sum)	
material	VPSOOF	µ(10HHz)=80000, Bs=1.27		inner hale A _{NI}	140 - 238 / 203	mm=(uncorr./com	by wriding gap)
encapsulation	plast hous		residual India (in	cl. isolation)	Øy = 131/122	mm (uncorr. / com	by winding gap)
dimensions: number of cores: No	1		SM.	winglength L	Cu= 110	cm (for 1 winding)	
04 ·	25/278	tren dawe sore field, enseas)		winding heij	98.0 = 33	mm (outside core)	
e,-	20/17.4	mm (sau souriest encaps)	number of winding layers (inner hole) =		(0)= 1.2	(1.0 layers: max. 2×25 tams)	
h _{ktal} = N _e h =	10/128	mm (saw con first integs)	winding factor f _{CU} =		CU = 0.15/0.19	uncorrected / corr by winding gap	
Data Sheet W323 AL(10 MHz, loc=0) =	23.4	µH (-25/445 %)	resistance at 20°C. Roupper 32.4 eff		et.)		
AL(100 MH2, IDC=0) =	6.5	µH (-25/+60 %)	29585	88. Li	at = 30	µH.	
Larg = 70.00 min Are,total =	20	nm*			17	pF at scores	- 0.49 MHz
measure a	10.4	a	estimated compone	10 5126; W.H.D.	file 33 × 18 × 35	mmp	
winding: Companent design	rbugg		estimated composi	ortinistt ing	mi = 23.6g	core + Cu (without casing)	
(no of windings) \times (no. of turns): $N_{\mu} \times N$ =	2×30			L ()=0) Z (1=0)	Common Mode Est, mas	Cifferential Mode I _{DK, max}
were dierreter. B _{CH} -	0.9	rom		[in h]		(cs. 20% B ₂)	(sa 70% B ₀)
corresponding wire type	-9/019		D	20.1	0.0724	127	21
number of strands =	1		10 k	Hz 28.6	1660	197	
e qep gribriw	2	nen .	100 1	H2 ; 6.43	6400	40.4	
tead correction in a	0			Vitges (30+1		Alassari	
distances on stars control was it.	0	0	11122101021101221	conterior dens	AT - 40	K D	16.7.928
impedance system (fighald incedince -	50	25	eventerio67 +		100		1
model control and competition and competition to a	60	45	028030160.085300. Tep =		sp 100	A THE OF THE VERY	
undearrowal used beumicsone teutor it :	119	9	111111111100010001	O COMPANY NO.	67 m	TANK DESCRIPTION	P. W.C. C.

	ò							VACUUMS	CHMELZE
VAC CMC CI	HECK	IST							
VACUUASCHIRELZE NOTE: The y	ellow fields a	CM	C Des	sign Cł	necklist	d in the white fie	Aug 2008	3	
Company name:					Contact person:			1	
Address:					Tel.:				
	 New pro Replace 	ject ment for:			E-Mail:				
Application	C SMPS/	JPS:			Date:				
(please speciry in more detail):	Drives/ Solar/P Welding Other:	nverter: hotovolta	ic:		Project name(s), description:				
Expected annual usage [pcs.]:	Year 1	Year 2	Year 3	Year 4	Target p Product life cycle	rice [€]: [years]:			
Sample quantity:			ocs.		samp	ole date:		1	
QM-Requirement:	□ ISO 900	0 0	TS16949	Othe	rs:			1	
								_	67
				v	AC - Advanced Materials	- The Key to Progres	ss 181	Det 2012	slide 67

	VACUUMSCHNELZI
CMC CHECKLIST (cont'd)	
Filter Design:	
Filter: 1-stage 2-stage multi-stage (No. of stages:)	
Schematic: draft on page 2 separate attachment	
Important Operational Characteristics	
(No.of windings) × Load current (nom.): ×A System voltage ¹⁾ [V]:	_
Max. load current [A]:forsec Working voltage ² [V]:	-
Switching frequency [kHz]: Pollution degree (typically 2):	_
Nominal inductance [mH]:@ 10 kHz Max. amb. temperature [*C]:	-
Nominal impedance [0]: @ kHz Convection: □	-
Max. unbalanced current /@1 < 50 kHz Fan:(m	u/s]
max. Common Mode Current [mA]:@MHz Heat sink: 🗆[K	/w]
Max. dimensions: W × D × H [mm]: Pinning already fixed ? Uyes	no
Electrical standards: EN 61800 EN 50178 UL Other: On	ne
^(j) connected to mains ² not connected to mains	_
	68
MAC Advasced Materials The Variate Diseases 19	04 2012 4146 69

